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Abstract

Recently, perfectly matched layer (PML) as an ab-

sorbing boundary condition has found widespread

applications. The idea was first introduced by

Berenger for electromagnetic waves computations.

In this paper, it is shown that the PML equations

for the linearized Euler equations support unstable
solutions when the mean flow has a component nor-

mal to the layer. To suppress such unstable solutions
so as to render the PML concept useful for this class

of problems, it is proposed that artificial selective

damping terms be added to the discretized PML
equations. It is demonstrated that with a proper

choice of artificial mesh Reynolds number, the PML

equations can be made stable. Numerical examples

are provided to illustrate that the stabilized PML

performs well as an absorbing boundary condition.

In a ducted environment, the wave mode are dis-

persive. It will be shown that the group velocity

and phase velocity of these modes can have opposite

signs. This results in a band of transmitted waves

in the PML to be spatially amplifying instead of
evanescent. Thus in a confined environment, PML

may not he suitable as an absorbing boundary con-
dition.

1. Introduction

Recently, Berenger 1'_ succeeded in formulating

an absorbing boundary condition for computational
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electromagnetics that has the unusual characteris-

tic that when an outgoing disturbance impinges on

the interface between the computation domain and

the absorbing layer surrounding it, no wave is re-

flected back into the computation domain. In other

words, all the outgoing disturbances are transmit-

ted into the absorbing layer where they are damped

out. Such a layer has come to be known as a per-

fectly matched layer (PML).

Since its initial development, PML has found

widespread applications in elastic wave propaga-

tion 3, computational aeroacoustics and many other
areas. Hu 4 was the first to apply PML to aeroa-

coustics problems governed by the linearized Euler
equations; linearized over a uniform mean flow. He
has since extended his work to nonuniform mean flow

and for the fully nonlinear Euler equations 5. Further

applications of PML to acoustics problems including
wavemodes in ducts can be found in the most recent

works of Hu and coworkers 6'7. In these references,

examples are provided that indicate that high qual-

ity numerical solutions could be found with PML
used as radiation or outflow boundary conditions.

In open unbounded domains, acoustic waves are

nondispersive and propagate with the speed of sound
relative to the local mean flow. Inside a duct, the

situation is completely different. Acoustic waves are

repeatedly reflected back by the confining walls. For

ducts with parallel walls, the continuous reflection of

the acoustic waves by the wall leads to the forma-
tion of coherent wave patterns called duct modes s'9.

Unlike the open domain, duct modes are disper-

sive with phase and group velocities vary with ax-
ial wavenumber. Because of the dispersive nature

of the duct modes many radiation boundary con-

ditions that work well in open domains are known

to be inappropriate for ducted environments. For

this reason, Tam 1° in a recent review on numerical



boundaryconditions for computational aeroacous-

tics, suggested that boundary condition for ducted

environment be regarded as a category of its own.

There are three primary objectives in this work.

First, we intend to show that in the presence of a

mean flow normal to a PML, the standard PML

equations of the linearized Euler equations support

unstable solutions. Earlier Tam l° had pointed out

that the PML equations with mean flow have un-

stable solutions. However, he did not show that the
existence of instabilities is due to the mean flow com-

ponent normal to the layer. The origin and char-
acteristics of these instabilities are investigated and

analyzed. It is interesting to mention that in his

earliest work, Hu 4 reported that his computation
encountered numerical instability. But by applying

numerical filtering, he was able to obtain stable so-

lutions. In light of our finding, we believe that what
Hu encountered was not instability of his numerical

scheme but that his numerical solution inadvertently
excited the intrinsic unstable solution of the PML

equations. Not directly related to the instability of

the PML equations, Abarbanel and Gottlieb 11 re-

cently analyzed the electromagnetic PML equations.
They concluded that the equations are only weakly

well-posed.

Second, we will show that the instability is not

very strong, namely, the growth rates are small.

Also the instabilities are confined primarily to short

waves. It is, therefore, possible to suppress the insta-

bilities by the addition of artificial selective damping
terms 12 to the discretized PML equations. It is im-

portant to point out that artificial selective damping

eliminates mainly the short waves and has negligible

effect on the long or the physical waves. Thus the

addition of these damping terms does not effect the

perfectly matched conditions of the PML.

Third, we will show that a perfectly matched layer

may not be suitable as an absorbing boundary con-
dition for waves in a ducted flow environment. The

major difference between acoustic waves in an open
domain and acoustic waves inside a duct is that in an

unbounded region acoustic waves are nondispersive
whereas duct modes are dispersive. It will be shown

that in the presence of a mean flow the group and
phase velocity of the duct modes can have opposite

signs. Because of this, a band of transmitted waves
will actually grow spatially instead of being damped

in the PML. In other words, the PML equations do

not damp these wave modes as absorbing boundary

condition ought to do. The exception is when there
is no mean flow in the duct. In this special case, all

the transmitted waves are spatially damped.

In section 2, the use of PML for open domain prob-

lems is discussed. The stability of the PML gov-

erning equations are investigated. It will be shown

that the addition of damping terms to form the PML

equations can actually cause the vorticity and acous-

tic wave modes to become unstable. The splitting

of the variables in formulating the PML equations

leads to a higher order system of equations. This

higher system supports extra solutions. These extra

or spurious solutions are found to become unstable

when the damping coefficient is large. Numerical ex-

amples are provided to illustrate the spread of the
unstable solution from the PML back into the inte-

rior of the computation domain.

In section 3, the effect of the addition of artifi-

cial selective damping terms to the discretized PML

equations is investigated. It is shown that with an

appropriate choice of mesh Reynolds number, the

unstable solutions of the PML equations can be sup-

pressed. Numerical examples are given to demon-
strate the effectiveness of the modified PML as a

radiation/outflow boundary condition.
Section 4 deals with the theory and application of

PML to ducted internal flow problems. An eigen-

value analysis is carried out to show the existence

of a band of frequency for which the PML exerts no

damping on the acoustic duct modes. These wave

modes actually would grow in amplitude as they

propagate through the PML. Numerical results are
provided to illustrate the existence of this kind of

amplifying ducted acoustic modes.

2. Open Domain Problems

Let us consider the use of PML as absorbing

boundary condition for the solution of the linearized

Euler equations (linearized over a uniform mean

flow) in a two-dimensional open domain as shown
in figure 1. We will use Ax = Ay (the mesh size) as

the length scale, a0 (the sound speed) as the veloc-

ity scale, _ as the time scale, poa2o (where p0 is the
u o

mean denmty) as the pressure scale. The dimension-

less governing equations in the PML are formed by

splitting the linearized Euler equations according to
the spatial derivatives. An absorption term is added

to each of the equations with spatial derivative in
the direction normal to the layer. For example, for

the PML on the right boundary of figure 1, the gov-

erning equations are 4,

8ul O+ aul + M_ (ux + u2)

,9
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into the entire F plane except for the slit ADC. But

since/32 is real and positive, for subsonic mean flow

the point/32 lies outside the image. Thus no value of

to in the upper-hMf to-plane would satisfy equation

(2) indicating that there is no unstable solution.

+v2)+_(px+p_) =0

-- +_Pl + M_--_(pl +P2)

+ O-_(Ul + u_) = 0

(1)

Op2 0 0
-t- My-_y (Pl + P2) + -_-_y(v, + v_) = 0o-7

where Mx and My are the mean flow Mach num-

bers in the z and y directions. (r is the absorption
coefficient.

Suppose we look for solutions with (z, y, t) depen-

dence in the form exp[i(az +/3y - tot)]. It is easy

to find from (1) that the dispersion relations of the

PML equations are,

(l aM,: /3My ) 2 a2 /32-- '= 0 (2)
w + i_ to (to + icr)2 to2

1 aM_ /3My _ O. (3)
to + ia to

In the limit a _ 0, (2) and (3) become the well-

known dispersion relations of the acoustic and the

vortieity waves of the linearized Euler equations.

2.1. Mean Flow Parallel to PML

Dispersion relations (2) and (3) behave very differ-

ently depending on whether there is any mean flow
normal to the PML. When the mean flow is par.allel

to the layer; i.e., M,, = 0, the solutions are stable.

This is easy to see from (3) for the vorticity wave.

Physically, if the mean flow is parallel to the PML,
the vorticity waves in the computation domain, be-

ing convected by the mean flow, cannot enter the
layer and hence would not lead to unstable solution.

To show that for M_ = 0 all the solutions of (2)

are stable, a simple mapping will suffice. Rewrite

(2) in the form

°2to2 =/32. (4)
f - (to - �3My) 2 - "(w + ia) 2

Figure (2) shows the image of the upper-half to-plane

in the F plane. The upper-half to-plane is mapped

2.2. Unstable Solutions of the PML Equa-
tions

For Ms :_ 0, the PML equations support unstable

solutions. It is to be noted that, unlike the origi-

nal dispersion relation of the acoustic waves, equa-

tion (2) is a quadric equation in to. It has two extra
roots in addition to the two modified acoustic modes.

For small cr, the two spurious roots are damped but
one of the modified acoustic roots is unstable. For

larger _r, numerical solutions indicate that one of the
spurious roots becomes unstable. In any case, the

equation splitting procedure and the addition of an

absorption term, both are vital to the suppression

of reflections at the interface between the compu-

tation domain and the PML, inadvertently, lead to
instabilities.

For small (r, the roots of (2) and (3) can be found

by perturbation. Let,

= + + +...

= + + + ...

(5)

(6)

to_°)=to+, to_, o, o (7)

where

to+ = (aM_ +/3My) 4- (a 2 +/32)_ (s)

_a2 :t: aM_(a2 +/32)_ ]
to_°) = i 42 +/32 + (_M_ +/3My)(_2 +/32)½ (9)

w(0_) = aM,: +/3My, 0 (9)

to_v) --i
- 1 + (-_-_)(_)" (11)

Clearly if w_°) or to_v) has a positive imaginary part,
the mode is unstable. It is easy to show, especially

in the case My = O, that there are always values of

a and t3 such that to_°) of (10) is purely imaginary

where the roots of (2) and (3) are designated by

a superscript 'a' (for acoustic waves) and 'v' (for

vorticity waves). Substitution of (5) and (6) into (2)

and (3), it is straightforward to find,



andpositive.Similarly,from(11) for _ < 0 and
181 > _-:,, _)is also purely positive imaginary.
Thus the PML equations in the presence of a uniform

flow with Mx # 0 support unstable solutions.

The unstable solutions of dispersion relations (2)

and (3) can also be found numerically. For a given

(a, B) the growth rates, wi, of the unstable solutions
can be calculated in a straightforward manner. Fig-

ure (3) shows the wi contours of the most unstable
solution of equation (2), the acoustic mode, in the

a- B-plane for the case Mx = 0.3, M r = 0.0 and

a = 1.5. Figure 4 shows a similar plot for the vortic-

ity wave mode (equation (3)). In these figures only

the unstable regions are shown. It is clear that there

are instability waves over a wide range of wavenum-
bers. Numerical results indicate that, in general, the

unstable regions expand as the flow Mach number or

the damping coefficient a increases.

2.3. Numerical Examples

The nature and characteristics of the unstable

waves associated with the acoustic mode and the

vorticity mode are quite different. To illustrate the
excitation of these unstable solutions in the PML by

disturbances propagating or convecting from the in-

terior computation domain, a series of numerical ex-

periments has been carried out. Figure 5 shows the
results of the case of a vorticity pulse convected into

the PML when Mx = 0.3, M r = 0.2 and _ = 1.0.

The initial conditions for the pulse are (same as the
initial conditions used by Tam & Webb 13)

p=p=0

(10)

v=-0.04xexp[-(en2)\ _)].(x2 +y2

The DRP time marching scheme 13 is used in the

simulation. The PML region extends from x = 20

to the right boundary of the computation domain.
At the outermost boundary, the boundary condition

Pl : P2 : Pl ---- P2 = Ul = U2 = Vl ---: v2 :- 0 are
imposed. Plotted in figure 5 are contours of the u

velocity component. Figure 5a shows the initial pro-
file of the contours at t : 0. Figure5b, at t = 50,

reveals that there is damping of the vorticity pulse

as it begins to enter the PML. This damping is the
result of the built-in damping, a, of the PML. Fig-

ure 5c, at a later time t : 90, shows the growth of

the excited unstable solution in the PML. FinMly,

figure 5d (at t = 130) shows the spread of the un-

stable solution back into the interior computation

domain. Figure 6 gives the corresponding waveform

of the vorticity wave pulse. Figure 6d clearly indi-

cates that the spread of the unstable vorticity waves

in the PML can quickly contaminate the entire com-

putation domain.

Figures 7 and 8 are similar plots illustrating the
excitation of the acoustic mode unstable solution in

the PML. The Mach number and damping coeffi-

cient are M_ = 0.5, M r = 0.0 and v- = 1.5. The
initial disturbance consists of a pressure pulse given

by,

P=p=exp[-(_n2)(x2-_Y2)] (11)

_Y_0.

The acoustic pulse generated by the initial distur-

bance propagates at a speed equal to the sound

speed plus the flow velocity. Thus, the pulse leaves
the small interior computation domain (50 × 50) very

quickly. Figure 7a shows the pressure contours at
t = 140. At this time, the acoustic pulse is gone.
The contours are associated with the excited un-

stable waves of the acoustic mode. These unsta-

ble waves move at a slow speed. Figure 7b is at

t = 200. On comparing figures 7a and 7b, it is ev-

ident that there is significant growth of the unsta-
ble waves. Upon reaching the outermost boundary

of the computation domain the unstable waves are
reflected back as short waves. This is illustrated

in figure 7c. The reflected short waves propagate
at ultrafast speed. They contaminate the computa-

tion domain in a short period of time as shown in

figure 7d. Figure 8 shows the growth of the pres-
sure waveform of the unstable acoustic mode waves

in the PML before they reach the outer boundary

of the computation domain. The measured growth

rate has been found to agree with that calculated by

the dispersion relation.

3. Development of a Stable PML

3.1. Artificial Selective Damping

To ensure practicality, the thickness of a PML

would normally be limited to around 15 to 20 mesh

spacings. For a PML with such a thickness, it is easy
to show that if the transmitted wave from the com-

putation domain is to be reduced by a factor of 10s

in the presence of a subsonic mean flow, the damp-

ing coefficient cr of (1) should have a value of about

4



1.5.Bysolvingthedispersionrelations(2)and(3)
numerically,it hasbeenfoundthat for _r= 1.5the
unstablewavesolutionshaveonlyamodestrateof
growth.Moreover,thesewaves,generally,haveshort
wavelengths.Mild instabilitiesof this typecanbe
effectivelysuppressedbytheadditionofartificialse-
lectivedampingterms12,14tothediscretizedgovern-
ingequations.Theadvantageof usingartificialse-
lectivedampingis that thedampingisconfinedpri-
marilyto shortwaves.Thus,theperfectlymatched
conditionisnotadverselyaffectedforthelongwaves
(thephysicalwaves)of thecomputation.

Considerthefirst equationof (1). Let (e,m)be
thespatialindicesin the x- and y-directions. The

semi-discretized form of this equation using the DRP

scheme with artificial selective damping terms added

to the right side is,

3

_t(ul)t,m+ tr(u,)t,m+ _ aj[M_:(Ul- u2)t+j,m]
j=-3

+ (p_ + v2)t+¢,.,]

3

= _A__ +
RA j=-3

where dj's are the artificial selective damping
coefficients 14 and RA = a¢¢ :'z is the artificial mesh
Reynolds number. Terms s_nilar to those on the

right side of (12) are to be added to all the other

discretized equations.
For the purpose of suppressing unstable solutions

in the PML, we recommend the use of a damping

curve with a slightly larger half-width then those

given in ref. [14]. In this work, the following damp-

ing coefficients (half-width = 0.357r) are used.

do = 0.3705630354

dl = d-1 = -0.2411788110

d_ = d__ = 0.0647184823

d3 = d-3 = -0.0088211899.

The damping rate of the artificial selective damp-

ing terms can be found by taking the Fourier trans-

form of the right side of (12) (see [12]). Let (a,_)

be the transform variables in the (z, y)-plane. The

rate of damping for wavenumber (a, fl) is,

damping rate = _--_D(a, fl)

where

3

D(a, fl)= _ di(e ija+e'iz). (15)
j=-3

Contours of the damping function D(a,fl) in the

a - fl-plane are shown in figure 9.

To demonstrate that suppression of the unstable

solutions can be achieved by adding artificial selec-

tive damping terms to the discretized form of equa-

tion (1), let us consider the unstable solution with

growth rate given by figure 3. On combining the

growth rate of figure 3 and the damping rate of fig-

ure 9 with RA = 1.421, the resulting growth con-

tours are shown in figure 10. Outside the dotted

lines (wavenumber inside the vertical dotted lines
corresponds to wavelengths too long to fit into a 15

mesh spacing PML) the combined effects result in

damping of the waves. Thus all the instabilities of
the PML equations are effectively suppressed.

(12) 3.2. Distributions of er and IRT,1 in the PML

In the implementation of PML as an absorbing

boundary condition, Hu 14 suggested letting er vary

spatially in the form,

a = trm (16)

where D is the thickness of the PML, d is the dis-
tance from the interface with the interior domain

and A is a constant. With the inclusion of artifi-

cial selective damping, we have found that the use

of a well-designed smooth distribution of cr and R_ 1

at the interface region is important if the perfectly
matched condition is to be maintained in the finite

difference form of the system of equations.

Figure 11 shows a distribution of _ and R_ 1 we

found to work well with the 7-point stencil DRP

scheme. The R_ 1 curve is zero for the first two
mesh points closest to the interface. It attends its

(13) full value (R_xl)max at the 6 th mesh point. A cubic

spline curve is used in the transition region. With

this arrangement, the first point that artificial damp-

ing occurs is the third point from the interface. This
allows the use of the 7-point symmetric damping

stencil in the PML except the last three points at

the outer boundary. For these points, the 5-point

and the 3-point stencil 14 should be used instead.

The a curve begins with the value _ = 0 at

the fifth mesh point from the interface. The full

value _m_x is reached at 8 mesh points further away.
(14) Again, a cubic spline curve is used in the transition



region.Thechoiceofstartingthea curve at the fifth

point is to ensure that the R/x I curve has attained
its full value when _r becomes nonzero.

3.3. Numerical Examples

To demonstrate the effectiveness of using artificial

selective damping terms to suppress th6 instabilities

of the PML equations, the numerical examples of

section 2.3 are reconsidered here. Artificial damping

is now included in the simulations. Figure 12 shows

the u-contours of the vorticity waves (M_ = 0.3,

M v - 0.2, ¢r,_ = 1.0, (R/xl)max = 1.0) as they are
convected from the interior domain to the PML. The

vorticity wave packet is steadily damped. No sign

of unstable waves of the type shown in figure 5 is

detected. Figure 13 shows the corresponding wave-
form of u at a few selected times. It is clear that

the pulse is damped continuously once it propagates
into the PML. The case of the acoustic disturbance

has also been repeated with similar results. Based

on these findings, it is concluded that a stable PML

can be developed by the inclusion of artificial selec-

tive damping. Such a PML performs very effectively

as an absorbing boundary condition in an open do-
main.

4. PML in Ducted Environments

We will now consider the use of PML inside a cir-

cular duct of radius R. Dimensionless variables with

respect to length scale R, velocity scale at (speed of

sound at r = R), time scale _ density scale Pt

(mean density at r = R) and pressure scale pta2t will
be used. The velocity components in the (x,r,¢)

directions of a cylindrical coordinate system are de-

noted by (u, v, w). For an inviscid compressible flow,
the most general mean flow (designated by an over-

bar) is

Oy Ov NOv 2Nw] N2r 0¢ r r

Op
= --- (18b)

0r

low _Ow dN WOw __2_]_T+ u + + +

10p

r 0¢ (18c)

zoo,1N-+_+v_; + ,-ocJ =-_ (18d)

Op + g Op N Op -_N 2
-_ _ + -;-_ + --v

[l_Ovr low Ou]+'_Lr 0r +7_+_ =0 (18e)

where 7 is the ratio of specific heats. The boundary
condition at the duct wall is

r=l, v=O. (19)

Solutions of (18) and (19) representing propagat-

ing wave modes in the duct may be written in the
form,

[;]{r rl/_(.)/
: =Re /_(_)/

/_(,)/
k _'(r) J

exp[i(kx + me - wt)]}.
(20)

Substitution of (20) into (18) and (19) leads to the

following eigenvalue problem.

_ i d _ mN~ k__
_( - __p+ _vr) wr P--_Pw

1

-m2_= -- PW-dr+po.
r

r

(17) (m )-F _g+_ =0 (21a)

Small amplitude disturbances superimposed on

mean flow (17) are governed by the linearized Eu-

ler equations. They are,
F 1---- _ _r j _r

Op 1 0 N Op Op
0-7 + -;N(-_vr) + V-_ + _ 0-7

i d_

w dr
(21b)

(lO ou)+_ N+_ =0 (18a)



m

= --p (21c)
_Jr

[( " ]1 - w tar / -_r = _P (21d)

1 k_ _. i _ _

[ i d(_r) k ]+'rV I.Z," _ _ '_- _ = 0 (21e)

r= 1, _=0 (22)

For a given azimuthal mode number m and fre-

quency w, k (the wavenumber) is the eigenvalue.

Corresponding to an eigenvalue is an eigenvector

_, fi, _', _, _, which describes the radial profile of the
wave mode.

4.1. Perfectly Matched Condition in Ducted
Flows

Suppose a perfectly matched layer is to be set

up as a termination boundary of a computation do-

main inside a duct. By splitting the variables; e.g.,

P = Pl + P2, etc. in the standard manner, the

PML equations corresponding to the linearized Eu-

ler equations ((18a) to (18e)) are,

Opl 1 0 _ O(pl + P2)
0--7-+ 7_ [_(v' + v_)_]+- r 0¢

+ p 0(w, + _) _ 0 (23a)
r 0¢

Op_

Ot
O(p_+p2)

OX

O(ux + u2) _ 0
+ P Oz (23b)

-_[og-_+w°(v_+v_)_0¢ 2_(_x + _)]

- ] 10(px + p_)+W(vl+_) - r 0¢ (23e)

[ Ow_ +w_)] =o (230

=0 (23g)

_[ o°-_-__ + '_"_+ _ °(''o:_+u_)]

o(pl+p_)
- Oz

(23h)

Opl _O(pl +P2) PW_.
0-'7-+ + --(vl + v2)r 0¢ r

10r(vl + v2) 10(wl + w2)]+ 3'_ r 0r + r 0¢ J
= 0 (23i)

Op2 O(pl + P2) O(Ul -I- u2)
O---t+ ap2 + _ Oz + 7 P Oz

= o (23j)

where cr is the damping coefficient in the PML. The

boundary condition is

r = 1, vx+v2=0. (24)

In the PML, the duct modes are represented by

solutions of the form (similar to (20)),

(25)

etc., where n is the wavenumber. On substituting

(25) into (23) and (24) and on defining

_ 0
- (el + p_) -; - g,.(pl + p,)

[Ov_ O(Vlo_+ v_)] = o[--_- + _v_ +

d_ N O(Wl +Wl)

-P[ 0_-_-+(va + v_)-dTr + r 0_

(23c)

(23d)

Z= _, +_'_

= _l +fi_

(26)



it isstraightforwardto find that theductmodesin
thePMLaregivenbythesolutionsof thefollowing
eigenvalueproblem.

^ i d ^ m_^ x_
p+_(_v,-)- _o--7- p w+i _

- _ _ _ +--_-g _ = o (27a)

"fi 1 w + io" _ wr _-i_ff j

i "_ 2 _ i d _
wr w dr

(27b)

[(
^ (27c)

WF .] _r

w+ia

i ^ d_] _ _ ^ (27d)
+ wV"_r] -- -_-+-_z P

m_) ^ , i -_

[ird('vr) m ^w x ]+ 7P dr wr w + i_r

= o. (27e)

The boundary condition is

r = 1, _= O. (28)

The eigenvalue is _. On comparing eigenvalue prob-

lem (21) and (22) with eigenvalue problem (27) and

(28), it is immediately clear that they are the same if

o__-in (21) is replaced by _--_o" Thus the eigenvalues
are related by

On the other hand, the eigenvectors are identical.

The fact that the eigenvectors of a duct mode in

the interior region of the computation domain is the
same as that in the PML assures that there is perfect

matching. That is, a propagating duct mode inci-

dent on the PML will be totally transmitted into
the PML without reflection. If the mean flow is

nonuniform, some of the duct modes may involve

Kelvin-Helmholtz or other types of flow instability

waves. However, the perfectly matched condition is
still valid for these waves.

4.2. The Case of Uniform Mean Flow

From (25) and (29), the transmitted wave mode
has the form

L_(r),_(_),_(r), _(r),_(r)] e_l_O+_)_+m_-_'l. (30)

If the wave mode is nondispersive, then k_, the in-
verse of the phase velocity, is positive for waves prop-

agating in the x-direction and negative in the op-
posite direction. For these nondispersive waves, the

transmitted waves are spatially damped; a condition

needed by the PML if it is to serve as an absorbing

boundary condition. However, inside a duct, the

wave modes are dispersive. The direction of prop-

agation is given by the group velocity "_-k" We will

now show that in the presence of a uniform mean
flow there is a band of acoustic duct modes for which

the group velocity and the phase velocity have op-

posite signs. Therefore, for this band of waves, the

transmitted waves would grow spatially instead of

being damped.

By eliminating all the other variables in favor of

_'(r), it is straightforward to find, in the case of a
uniform mean flow of Mach number M, (21) and (22)

reduce to the following simple eigenvalue problem.

d2p+ldp [ m2]dr-'-'T r'_r + (_ - Mk)2 - k2 - _ ff = 0(31)

d_
r = 1 -- = O. (32)

' dr

The eigenfunction is

i_= Jm(A,_, r) (33)

where Jm( ) is the mth order Bessel function and
Amn is the n th root of

J_()_m,_) = 0. (34)

By substitution of (33) into (31), it is found that
the dispersion relation or eigenvalue equation for the

(m, n) th acoustic duct mode is

(w Mk) _ k _ _ (35)



Theaxialwavenumberof the mode at frequency w

are given by the solution of (35). They are,

initial condition is,

k+ = -wM =I:[w2_ (I- M2)A n]½ (36)
(I- M')

The group velocity of the duct mode may be deter-

mined by implicit differentiation of (35). This gives,

dw :]=[w' - (1 - M2)A_mn]½(1 - M 2) (37)
d"-k = w :T M[w _ - (1 - M')A_mn] ½

In (37), the upper sign corresponds to k = k+ and
the lower sign corresponds to k = k_. For subsonic

mean flow, clearly d_- > 0for k = k+ and _ < 0
for k = k_. Therefore, the downstream propagat-

ing waves have wavenumber given by k = k+, while

the upstream propagating waves have wavenumber

equal to k_.

From (37), it is easy to show that for (1-

M2)½Amn < w < Amn the phase velocity k+_is nega-

tive although the group velocity is positive. Accord-

ing to (29), for waves in this frequency band, the
transmitted wave in the PML will amplify spatially.

This renders the PML useless as an absorbing layer

except for M = 0. In the absence of a mean flow

normal to the PML (M = 0), k+ will not be neg-

ative by (36). Thus, the transmitted waves in the
PML are evanescent. For this special condition, the

PML can again be used as an absorbing boundary
condition.

4.3. Numerical Examples

To demonstrate that a PML in a ducted environ-

ment actually supports a band of amplifying wave

modes, a series of numerical simulations has been
carried out. In the simulations, a uniform mesh with

Ax = Ar = 0.04 covering the entire computation
domain from x = -6.0 to x = 12.0 is used. The

PML in the upstream direction begins at x = -3.0
and extends to z = -6.0. In the downstream di-

rection, the PML occupies the region from z = 3.0

to x = 12.0. The dimensionless damping constant

(nondimensionalized by _-) _ is set equal to 25.0.
The results of two simulations, one with a mean flow

Mach number 0.4, the other with no mean flow are

reported below.

For convenience, only the axisymmetric duct
modes are considered. The computation uses the

7-point stencil DRP scheme 13. The acoustic distur-

bances in the computation domain is initiated by a

pressure pulse located at z = 0 and r = 0.5. The

t--0, U----v----0,

p: oxp[-(en +(,-0.5)')]N

(38)

Figure 14 shows the time evolution of the acous-

tic disturbance inside the computation domain at

M = 0.4. Specifically, the pressure waveforms along
the line r = 0.38 are shown at t = 10, 13, 15 and 16.

As can be seen, once the pressure pulse is released,

it spreads out and propagates upstream and down-

stream. Figure 14a indicates that at time t = 10 the

front of the acoustic disturbance has just entered the
PML in the downstream direction. There is no evi-

dence of wave reflection at the interface between the

PML and the interior computation domain. The

transmitted wave grows spatially as shown in fig-

ure 14b. The amplitude of the transmitted wave in-

creases steadily as they propagate across the PML.

This is shown in figures 14c and 14d. When the am-

plified waves reach the outermost boundary of the

PML, large amplitude spurious waves are reflected
back. This quickly contaminates the entire compu-
tation domain.

Figure 15 shows the same simulation except that
there is no mean flow. In the absence of a mean

flow, the PML acts as an absorbing layer. Figure 15a

shows the entry of the acoustic pulse into the down-

stream PML. Figures 15b to 15d show the damping

of the acoustic pulse in time in the PML. The slowest

components to decay are the long waves. This is in

agreement with the analysis of the previous section.

5. Concluding Remarks

In this paper, we have shown that the application

of PML as an absorbing boundary condition for the

linearized Euler equations works well as long as there
is no mean flow in the direction normal to the layer.

For open domain problems, the PML equations, in

the presence of a subsonic mean flow normal to the

layer, support unstable solutions. The growth rate of

the unstable solutions is, however, not large. These

unstable solutions can, generally, be suppressed by
the addition of artificial selective damping. In the

case of a ducted environment, we find that because

of the highly dispersive nature of the duct modes, a
band of the transmitted waves in the PML amplifies

instead of being damped. This seemingly renders the

PML totally ineffective as an absorbing boundary
condition.



Oneof the importantadvantagesof usinganab-
sorbingboundaryconditioninsteadof othernumer-
ical boundarytreatmentsis that theboundaryof
thecomputationdomainmaybeputmuchcloserto
thesourceof disturbances.In this way,a smaller
computationdomainmaybe usedin a numerical
simulation.Foropendomains,suchanabsorbing
boundaryconditioncanbedevelopedbytheuseof
PMLwithartificialselectivedampingterms.Unfor-
tunately,thesameisnotpossibleforinternalducted
flow. An effectivenumericalanechoictermination
forducteddomainshasyetto bedeveloped.
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THE EFFECT OF NOZZLE GEOMETRY ON THE

NOISE OF HIGH-SPEED JETS

Christopher K.W. Tam

Department of Mathematics, Florida State University

Tallahassee, FL 32306-4510 USA

ABSTRACT

This paper examines the effectiveness of jet noise reduction by the use of different

nozzle exit geometry. Since there will be thrust loss associated with a nozzle of complex

geometry, consideration is confined to practical configurations with reasonably small

thrust loss. In this study, only jets with a single stream are considered. The nozzle

configurations examined are circular, elliptic and rectangular. Included also are plug

nozzles as well as a suppressor nozzle. It is shown that the measured turbulent mixing

noise of the jets from these nozzles consists of two independent components. The noise

spectrum of each component is found to fit the shape of a seemingly universal similarity

spectrum. It is also found that the maximum levels of the fitted noise power spectra of

the jets are nearly the same. This finding suggests that nozzle geometry modification

may not be an effective method for jet noise suppression.

1. INTRODUCTION

Reducing high-speed jet noise is currently a high priority research and development

effort of the aircraft industry. Despite many years of jet noise research, noise reduction is

a highly empirical endeavor. Since the early work of Westly and Lilley 1 many attempts

have been made to modify the shape of the nozzle exit in the belief that this would

reduce the turbulence intensity of the jet leading to a reduction in the radiated noise.

On following this concept, plug nozzles, corrugated nozzles as well as nozzles with multi-

chute elements have been introduced for noise suppression purpose.

The objective of this paper is to examine the effectiveness of jet noise reduction

by nozzle exit geometry modification. Of course, there will be thrust loss in using a

nozzle with complex geometry. Our consideration is, therefore, confined to practical

geometries for which the thrust loss is reasonably small. In order to focus attention



on nozzle geometry alone, we will only consider jets formed by a single stream. Multi-

stream jets, invariably, would introduce thermodynamic and other flow parameters as

variables. Under this circumstance, a simple statement on the effectiveness of nozzle

configuration for noise suppression cannot be easily made.

In Section 9. of this paper, the effect of nozzle geometry on the turbulent mixing

processes in jets is discussed. For high-speed jets the mixing process is influenced only

by upstream events. Thus the normal expectation is that the nozzle exit configuration

would exert considerable influence on the development of the large and fine scale turbu-

lence of the jet flow and hence its noise. In Section 3, turbulent mixing noise data from

a variety of nozzles will be examined and analyzed. It will be shown that the noise level

is, to a large extent, insensitive to the nozzle shape. This is true even for jets embedded

in open wind tunnel flows simulating forward flight effects. This result seems to suggest

that modification of a nozzle exit configuration may not be an effective method for noise

suppression.

2. NOZZLE GEOMETRY AS AN INITIAL CONDITION

Tam and Chen a, based on their observation of the noise directivity and spectrum

measurements of Seiner et al. 4, were the first to clearly suggest that turbulent mixing

noise from high-speed jets is made up of two components. One component is in the form

of Mach wave radiation generated by the large turbulence structures of the jet flow.

This component radiates only in the downstream direction. The other component is

generated by the fine scale turbulence of the jet. The radiated noise has a more uniform

directivity. Experimental confirmation of the existence of the two noise components

was not available until the recent investigation of Tam, Golebiowski and Seiner 2. By

analyzing the entire data bank of axisymmetric jet noise spectra measured in the Jet

Noise Laboratory of the NASA Langley Research Center, they were able to extract the

shapes of two self-similar spectra from the data. They then demonstrated that all the

noise spectra were made up of a combination of the two similarity spectra. Let S be the

noise power spectrum (S has the dimensions of pressure squared per unit frequency)

then S can be expressed in the following similarity form,

where F (/J-/n) and G (/J-_-r)are the similarity spectra of the large turbulence structure

noise and the fine scale turbulence noise respectively, fL is the frequency at the peak

of the large turbulence structures noise spectrum and fF is the frequency at the peak

of the fine scale turbulence noise spectrum. The spectrum functions are normalized

such that F(1) = G(1) = 1. In equation (1), A and B are the amplitudes of the

independent spectra. They have the same dimensions as S. Dj is the fully expanded

jet diameter and r is the distance between the noise measurement point and the nozzle

exit. The amplitudes A and B and the peak frequencies fL and fF are functions of

the jet operating parameters -YJ--, _ and the direction of radiation X (measured from

the jet inlet), vj and a¢¢ are the jet velocity and the ambmnt sound speed. Tr and T_

are the reservoir and ambient temperature. One remarkable feature of the similarity

spectra is that they fit the data well regardless of jet velocity, jet temperature, direction



of radiation, and whether the jet is perfectly or imperfectly expanded (in the caseof
supersonicjets). These spectra areusedextensively in the presentinvestigation.

In high-speed jet flows, there is practically very little upstream influence. Thus
the turbulence level near the end of the core region, where most of the jet noise is
generated, is affected primarily by the mixing processesupstream and the conditions at
the nozzle exit. From this point of yiew, the nozzle geometry may be regarded as an

initial condition on the spatiM evolution of the jet velocity profile and the turbulence

intensity and spectral content downstream. For noise suppression purposes, the crucial

question to ask is how sensitive the turbulence level of the jet flow near the end of

the potential core is to the initial condition at the nozzle exit. There is no question

that by changing nozzle geometry the entrainment flow and hence jet turbulence in

the region immediately downstream of the nozzle exit is affected. However, turbulent

mixing is a highly nonlinear process. It is known, nonlinear process can lead to the

same asymptotic state regardless of initial conditions. (For a discussion of the lack of

influence of initiM conditions on self-similar turbulent flows, see the work of Tam and

ChenS.) For high Reynolds number jet flows, it is possible that a jet issued from a

noncircular nozzle evolves quickly into a more or less axisymmetric jet before the end

of the core is reached. In such a case, the radiated noise would be similar to that of a

circular jet both in intensity and spectral content. In the next section, it will be shown

that this appears to be the case.

3. EVALUATION AND COMPARISONS OF DATA

Supersonic jet noise data from two sources are used in the present study. The first
set of data is taken from the data bank of the Jet Noise Laboratory of the NASA Langley

Research Center. This set of data consists of noise spectra from a Mach 2 aspect ratio

3 elliptic jet and a Mach 2 aspect ratio 7.6 rectangular jet. These are high quality data;

comparable to those used in the work of Tam, Golebiowski and Seiner 2.

The second set of data is taken from the published measurements of Yamamoto et

al. 6. In this series of experiments, six nozzles are used. They include a conical nozzle,

a convergent-divergent (C-D) round nozzle, a convergent annular plug nozzle, a C-D

annular plug nozzle, a 20-chute annular plug suppressor nozzle with convergent flow

segment terminations and a 20-chute annular plug suppressor nozzle with C-D flow el-

ement terminations. The noise spectra of the jet from the fifth nozzle, however, are

strongly different from the same configuration suppressor nozzle but with C-D flow ele-

ment terminations and the other nozzles. Without knowing the cause of the difference,

it is decided to ignore the data associated with this nozzle.

3.1 COMPARISONS WITH SIMILARITY NOISE SPECTRA

Figure 1 shows direct comparisons between the measured elliptic and rectangular

jet noise spectra at Mach 2 and TX.Too= 1.8 from the NASA Langley Research Center

and the similarity spectrum for the large turbulence structures noise of Tam et al. 2 at

X = 150 deg. The elliptic jet noise data are measured on three planes containing the

jet axis. One is on the minor axis plane, one on a plane at 58 degrees to the minor

axis plane and the third on the major axis plane. They are the top three curves in the

figure. The bottom two curves are from the rectangular jet noise data measured on the

minor and major axis planes. As can be seen, there is good agreement between the



measured spectrum shapes and the similarity noise spectrum (the F(/-//L ) function of

equation (1)). This is so despite the fact that the nozzle geometries are very different.

Comparisons between the measured spectra at X - 90 deg. and the similarity noise

spectrum or the fine scale turbulence noise (the G(4--) function of equation (1)) for the

elliptic and rectangular jets are given in Figure 2. _galn, the top three curves are those

of the elliptic jet and the bottom two curves are of the rectangular jet measured on the

same azimuthal planes as in Figure i. It is evident that there is good agreement overall

regardless of nozzle shapes.

Figure 3 shows the noise spectrum shapes of the Yamamoto ¢t al. data 6 at X -- 150

deg. The jet velocity in each case is very close to 2420 ft/sec and the total temperature

is approximately 1715 deg. Rankine. The four spectra are (from the top down) from

the C-D round nozzle, the convergent annular plug nozzle, the C-D annular plug nozzle

and the 20-chute annular suppressor nozzle. The data from the conical nozzle is nearly

the same as the C-D round nozzle and is, therefore, not displayed. The full curves are

the similarity noise spectrum (the F(/J-i) function) of Tam ¢t al. 2. On ignoring the very

low frequency part of the noise spectrum, it is clear that the agreement between the

measured data and the similarity spectrum is good for all the cases.

Figure 4 shows similar comparisons as in Figure 3 but at X = 90 deg. By compar-

ing the several spectra shown, the facility noise contamination at low frequencies can

be readily detected. The full curves are the similarity spectrum given by the G(/JTF )

function. Overall, there is again good fit between the data and the similarity spectrum.

3.2 COMPARISONS OF MAXIMUM SOUND PRESSURE LEVELS

To assess whether nozzle geometry has significant influence on high-speed jet noise,

we compare the sound pressure levels at the peaks of the fitted noise spectra, SPLmax,

in dB/Hz at r = 100Dj from the various jets with the level of the simple circular C-D

nozzle. The results are shown in Tables 1 to 4.

Table 1 compares the SPLmax of the elliptic jet at temperature ratio T.T_r__(T¢¢) of 1.0,

1.37, 1.80 and 2.27 at jet Mach number 1.98 with the corresponding values of a circular

jet. We have chosen the microphone measurements at X = 150 deg. to characterize

the large turbulence structures noise component and the microphone measurements at

X -- 90 deg. to characterize the fine scale turbulence noise component. The first row

of data is measured in the minor axis plane. The second row is measured in a plane

at 58 degrees to the minor axis plane. The third row is measured in the major axis

plane. The last row is the data from a circular jet at the same jet velocity and total

temperature. Within experimental uncertainty, it is clear from the table that the noise

from the elliptic jet is, first of all, quite axisymmetric. Further, it is nearly the same

as the circular jet. Table 2 provides direct comparisons between the SPLmax of the

rectangular jet and a circular jet. Again, within experimental uncertainty, there is very

little difference in the noise levels.

Tables 3 and 4 show the SPLmax data at X = 150 and 90 deg. for the various

nozzles of the Yamamoto ¢t aI. experiments. It is worthwhile to remind the readers
1

that the data are converted from _ octave band measurements and possibly slightly

contaminated by shock and facility noise. The experimental uncertainty could be as

large as 2 to 3 dB by our estimate. By comparing all the data with those of the C-D

nozzle, it is evident that the differences are well within the experimental uncertainty.

Thus, in spite of the large differences in nozzle geometry, the noise from supersonic jets
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are remarkably the same. Based on these results, it is possible to surmise that nozzle

exit geometry may not have significant control over the noise of high-speed jets.

4. CONCLUSION

Extensive comparisons between the noise radiated by supersonic jets operating at

various temperatures and velocities with and without simulated forward flight and the

noise from a circular jet at the same conditions have been carried out. Seven nozzles

of practical geometries are included in the study. It is found that regardless of nozzle

geometry, turbulent mixing noise of all the jets is comprised of two components. One

component is the noise from the large turbulence structures and the other is noise

from the fine scale turbulence of the jet flow. Further, the radiated sound is largely

axisymmetric and that the shapes of the spectra of the two noise components are nearly

the same as those of the similarity spectra of Tam, Golebiowski and Seiner 2. In addition,

the noise levels are essentially independent of nozzle configuration. Based on these

results, it is concluded (bearing in mind the limited scope of this study) that nozzle

geometry modification may not be an effective method for jet noise suppression.
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Table 1. Elliptic jet (aspect ratio 3, Mj -- 1.98)

SPLmax

at r - IOODj

(dB/Hz)

X - 90 deg. X = 141 deg.
1.00 1.37 1.80 2.27 1.00 1.37 1.80 2.27 measurement plane

74.3 75.5 77.0 96.8 99.5 101.7 Iminor axis plane

74.3 75.7 76.8 78.3 96.1 98.8 100.3 101.3 58 deg. plane

74.5 75.5 77.0 78.6 94.4 97.5! 101.7 101.7 major axis plane

75.5 76.2 77.3! 78.5 97.3 99.3 100.7 102.1 circular jet

Table 2. Rectangular jet (aspect ratio 7.6, Mj --2.0)

X = 90 deg. X = 150 deg.
Tr/Too 1.10 1.82 2.26 1.10 ! 1.82 2.26 measurement plane

SPLmax 74.9 76.9 77.5 98.5 102.1 102.4 minor axis plane

at r = 100Dj 74.9 75.9 77.0 98.1 100.2 100.6 major axis plane

(dB/Hz) 76.0 77.7 78.8 98.4 101.5 102.6 circular jet



Table 3. Yamamoto et al. data

(vj __ 2420 ft/sec, Tr -_ 1715 deg. R)

nozzle conical C-D nozzle convergent C-D plug suppressor inlet angle
type nozzle Md = 1.4 plug nozzle nozzle nozzle X, degree

98.8 97.7 98.7 99.0 97.4 150

77.6 75.0 76.6 77.2 74.5 90

S P Lmax at

r = 100Dj (dS/nz)

Table 4. Yamamoto et al. data

(vj "_ 1720 ft/sec, Tr -_ 870 deg. R)

nozzle C-D nozzle

type Md --- 1.4

SPLmax at 95.0

r = 100Dj (dB/Hz) 70.3

convergent
plug nozzle

96.2

73.0

C-D plug suppressor inlet angle
nozzle nozzle X, degree

97.1 92.5 150

74.0 70.0 90
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Figure 1. Comparisons between elliptic and rectangular jet noise
data and the similarity spectrum at X = 150 deg., _ = 1.8

Too

Aspect ratio 3 elliptic jet: (a) minor axis plane, (b) 58 degree
plane, (c) major axis plane.

Aspect ratio 7.6 rectangular jet: (d) minor, (e) major axis plane.
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Figure 2. Comparisons between elliptic and rectangular jet noise
data and the similarity spectrum at X = 90deg., _ = 1.8

Aspect ratio 3 elliptic jet: (a) minor axis plane, (b) 58 degree

plane, (c) major axis plane.
Aspect ratio 7.6 rectangular jet: (d) minor, (e) major axis plane.
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Figure 3. Comparisons between Yamamoto et al. data and the sim-

ilarity spectrum. I,_ __ 2420 ft/sec, Tr _- 1715 deg R, X = 150 deg;
o data, -- similarity spectrum. (a) C-D nozzle, (b) conver-

gent plug nozzle, (c) C-D plug nozzle, (d) 20-chute C-D suppressor
nozzle.
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Figure 4. Comparisons between Yamamoto e_ al. data and the

similarity spectrum, l_ = 2420 ft/sec, Tr "" 1715 deg R, X = 90
deg; o data, --similarity spectrum. (a) C-D nozzle, (b) conve

rgent plug nozzle, (c) C-D plug nozzle, (d) 20-chute C-D suppressor
nozzle.


